Dízimas periódicas
Há frações que não possuem representações decimal exata. Por exemplo:
Aos numerais decimais em que há repetição periódica e infinita de um ou mais algarismos, dá-se o nome de numerais decimais periódicos ou dízimas periódicas.
Numa dízima periódica, o algarismo ou algarismos que se repetem infinitamente, constituem o período dessa dízima.
As dízimas classificam-se em dízimas periódicas simples e dízimas periódicas compostas. Exemplos:
(período: 5) | (período: 3) | (período: 12) |
Período: 2 Parte não periódica: 0 | Período: 4 Período não periódica: 15 | Período: 23 |
São dízimas periódicas compostas, uma vez que entre o período e a vírgula existe uma parte não periódica.
Observações:
Consideramos parte não periódica de uma dízima o termo situado entre vírgulas e o período. Excluímos portanto da parte não periódica o inteiro.
Podemos representar uma dízima periódica das seguintes maneiras:
Geratriz de uma Dízima Periódica
É possível determinar a fração (número racional) que deu origem a uma dízima periódica. Denominamos esta fração de geratriz da dízima periódica.
Procedimentos para determinação de uma dízima:
Procedimentos para determinação de uma dízima:
Dízima simples
A geratriz de uma dízima simples é uma fração que tem para numerador o período e para denominador tantos noves quantos forem os algarismos do período. |
Exemplos:
Dízima composto
A geratriz de uma dízima composta é uma fração da forma , onde: n parte não-periódica seguida do período, menos a parte não-periódica. d tantos noves quantos forem os algarismos do período seguidos de tantos zeros quantos forem os algarismos da parte não-periódica. |
Exemplo:
12,53262626... = 12 + 0,53262626... =
Nenhum comentário:
Postar um comentário